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ABSTRACT
It is shown that a bounded biinfinite banded totally positive matrix
A is boundedly invertible iff there is one and only one bounded sequence
mapped by A to the sequence ((-)i). The argument shows that such a
matrix has a main diagonal, i.e., the inverse of A is the bounded point-~
wise limit of inverses of finite sections of A principal with respect to

a particular diagonal, hence ((-)l+JA—1(i,j)) or its negative is again

totally positive. Accession For
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:x// SIGNIFICANCE AND EXPLANATION

Spline approximation is often most effective when the breakpoint (knot)
sequence can be chosen suitably non-uniform. At the same time, the standard
approximation schemes (such as least-squares approximation, or interpolation
at suitable interpolation points by splines) are so far only known to be
usable and bounded as long as the breakpoint sequence is almost uniform.
The problem of showing existence and uniqueness of bounded spline approxi-
mants to bounded data boils down to showing invertibility of a certain
infinite matrix A. The distinguished features of this matrix are its
bandedness and its total positivity, i.e., all minors of A are nonnegative.
In this paper we show that if there is exactly one bounded sequence mapped
by a biinfinite totally positive banded matrix A to the particular
sequence (°°°*,-1,1,-1,1,~1,***), then every bounded sequence is contained
in the range of A. 1In spline terms, this result says, for example, that
any bounded data sequence can be interpolated, and in exactly one way, with
a bounded spline (with a given knot sequence, at a given interpolation point
sequence) provided that the periodic data (+1,—1) can be interpolated, and
in exactly one way, by a bounded spline from that class. Further, our argu-
ments show that such an interpolating spline can be constructed as the limit

of splines which satisfy finitely many of the given interpolation conditions.

4\
P’ p3

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE INVERSE OF A TOTALLY POSITIVE BIINFINITE BAND MATRIX
carl de Boor
O.Introduction. This paper is a further step in a continuing effort to understand cer-
tain linear spline approximation schemes. Convergence of such processes is intimately tied

to their stability, i.e., to their boundedness, as maps on C , say. Use of the B-spline

basis shows this question to be equivalent to bounding the inverse of certain totally posi-

tive band matrices. The calculation of bounds on the inverse of a given matrix is in gener-
al a difficult task. It is hoped that the present investigation into the consequences of
bandedness and total positivity for the structure of the inverse may ultimately prove help-
ful in obtaining such bounds.

The results in this paper were obtained in the study of a conjecture dus to C. A.
Micchelll [7] . In connection with his work on the specific approximation scheme of inter-
polation at a (strictly increasing) point sequence <% by elements of sm,t s, 1.0., by
splines of some order m with some knot sequence ¢ = (ti) » Micchelli became convinced
that every bounded function has one and only one bounded spline interpolant iff the partic-
ular function which satisfies 1(11) - (-)i , all i, has a bounded spline interpolant in
‘m,t o« If (Ny) = (Ni,m,t) denotes the corresponding B-spline basis for ‘m,t . then
Micchelli's conjecture can be phrased thus: The matrix A = (Nj(Ti)) is boundedly invert-
ible iff the linear system
(1 ax = (=)

has a bounded solution. Micchelli points out that, for a finite A , this conjecture is

indeed true and can be established using the total positivity of A .

Whether A = (Nj(ri)) is finite or not, it is not difficult to see that A fails to !
be invertible unless A is m-banded, i.e., unless T and t 8o harmonize that at most
m+1 consecutive bands of A are not identically zerc. It is then a small step to the

conjecture
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"A totally positive m~banded matrix A is boundedly invertible iff (1) has a bound-
ed soluti.n”
whose truth Micchelli demonstrated to me for the case that A is a (biinfinite) Toeplitz
matrix.

As it turns out, this conjecture is incorrect; it fails unless one assumes, more
strongly, that (1) has a unique bounded solution. This uniqueness plays a crucial role in
the proof of the (corrected) conjecture given below. The proof is first given for strictly
m~banded matrices and is then extended to a general m—banded matrix by a limit argument,
using a 'smoothing’ result from [4].

In outline, our argument is as follows: We show that the nullspace

W= W, = (ferfiar=o0)
of a strictly mbanded matrix A is Haar' ip the sense that, for every f e¥lNo , ¢
has less than m = dim¥! weak sign changes. Here, f' is obtained from f by changing
the sign of every other entry,
£1(4) = (=) e(4) , a1l i,
This makes it possible to interpolate the bounded golution x to (1) at any mset
I ;= {11,...,1m} by some Yy el . The next (and hardest) step consists in showing that,

for k = m" := dim Nt with

woi= (el lm )£(4)] < =}

1900
Y lies between x and 0 on the interval I(k) = ]ik'ikﬂ[ , if we assume that i4 <
see < i . This implies that x; := x - Y1 satisfies
] I < Ixt .
11 )
We use this fact as follows. If J 1is any integer interval, and AJ' J+k is the
corresponding section of A having the k-th band as its main diagonal, then

(=)

provided we choose I = [Jy(J+m)] \(J+k) . But then, because of the total positivity of

v (AXI)IJ = AJ,J#-k(xIIJ#-k)

A,

L




and this is bounded by {Ixl since 1'%) = g4k 1in this case . This uniform boundedness of
the inverses of all sections which are principal with respect to the k-th band is suffic-
ient for the bounded invertibility of A itself.

In this way, we show not only that existence and uniqueness of a bounded solution for
(1) implies bounded invertibility of A , but gain structure information about the inverse:
The inverse is the pointwise bounded limit of the inverses of finite sections principal
with respect to one particular band. In the terms of (1], (2], A has a main diagonal.
This, in turn, permits the conclusior :at the inverse of a totally positive band matrix is

checkerboard, a statement conjectured in (5;p.319].




1. Preliminaries, 1In this section, we list certain notational conventions for easy

reference.

We use lower case letters to denote elements of R: + i.e., real functions on some
integer set 1 , with £(i) the value at i of the function (or sequence) f . If £
never vanishes, then S(f) denotes the number of sign changes in f , i.e.,

s(f) := [{i1e1: f(i)f(s(i)) <0},
with s8(i) := min{j € I : § > 1} the successor to i if we think of I as an ordered
sequence. Here, |J| denotes the cardinality of the set J . If f vanishes somewhere,
then it is customary to distinguish between strong and weak sign changes. These are given
by

ST(£) := inf{S(v) : v @ sign £} , S (f) := sup{S(v) : v € sign £}

respectively, with sign f := {v € {-1,1}I + v(1)£(4) = [£(41)] , all i} .« In the sequel,
an unqualified “sign change™ will always mean "weak sign change". It is convenient to
supplement the definition of S~ and S* by setting

ST(f) = -1, s*(f) = |I|] 4f £=0.
It is then easy to check that

sT(f) + s'(£') = |1] -1, for a11 £ e R,
with I = {11, ceey 1n} s 14 € eee < i, , and
£104,) = (=)%(i) , s=1,.e0,n .

We also employ the prime to indicate a signature change in every other entry in case
I =2 . To be definite, we set

£(4) = (=)ie(4) , all 1, all £ e R .
In particular, 1' denotes the biinfinite sequence given by

1) = ()b, a1,

If J 4is a subset of I , then fIJ denotes the restriction of £ € Rl to J . In

this connection, \J := I\J denotes the complement of J in I . We write \j instead

of \{j} . Further,

J+¢k = {3+k : § e J}
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and
{i,3] := {kez: i< k< ij}.
More generally, (J] denotes the smallest integer interval containing J .

Correspondingly (though not completely in the same way), we denote by AK,L the

X
restriction of the "matrix" A € l? o to the subset KxL of IXJ . If K = (k1,...,kp}

and L = {21,...,19} s With kg € ees < kp , A, < eee ¢ £p , then

1
ez p
det Ag ; 3 det (A(ki'lj))i,j=1 .

All norms are sup-norms. Explicitly,
I
[ E3 supieIlf(i)l , all f eRrR

and
J . IxJ
1AL := sup{lAflI/Ifl : £ e R, Ifi<w} = sup I |A(i,j)| , for AR € R .
ier jes

Further, & := L (2Z) := {f e R :lfl cw } « We call A € R® bounded if A maps £,
to itself, or, equivalently, if ¥Al < » . If need be, we distinguish between the bounded
matrix A and the linear map induced by it on {_ by calling the latter
A .
Iz,

IxJ is totally positive ( =; tp ) if

The matrix A € R *
det AK,L > 0 for all KxLC IxJ with |K| = || .
See Karlin's comprehensive book (6] for details.

Finally, if i,, ese, i and Jy, eoes, J are sequences in I and J ,
1 1 P

p
respectively, and A € RIXJ , then we ugse the customary abbreviations
L geee,dl
L P p
A < H
[j1,...,3p] = (A(is'jt))s,t=1
and
1 4000,4
! P P
H d .
Al j1l"01jp - et (A(is'jt))slt“




2. The nullspace of a strictly m-banded biinfinite matrix. The r—th diagonal or band
of a matrix A 1is, by definition, the sequence (A(i,i+r)) « As in (1], we call a matrix
A w=m-banded if al)l nonzero entries of A can be found in at most m+1 consecutive bands.
Explicitly, the matrix A is m—banded if

for some £ , A(i+2,3j) # 0 implies i € j € i+m .
Unless otherwise indicated (e.g., by context), we will always assume that £ = 0 . For a
biinfinite matrix A , this is merely a normalization achieved by considering E-lA in-

stead of A , with E the shift,

(EE)(1) := £(i+1) , all 1, all £ € R®,

an invertible operator which preserves more or less all interesting structures in Rz .

The m-banded matrix A is called strictly m-banded if

A(i,1)A(1i,i+m) ¥ 0 , all & ,
i.e., the first and last nontrivial band is never zero. In case of a biinfinite matrix A ,
this nontrivial assumption insures that, for every m-interval I = {i+1,e0.,i+m} , every
aer gives rise to one and only one sequence f with Af =0 and f|I = a . To put it
differently, with
Re= W, o= {f e R% : af = 0}
denoting the kernel or nullspace of A , strict m—bandedness insures that
for every I := [i+1,i+m] , the map o — £ — fII is 1-1 and onto.

We now prove this statement to be true for every m-set I in case A is also tp. We

begin with the following

Lemma 2.1 . If A 1is strictly mbanded and tp, and i, < ... < lpr 3y € ene ¢ Ip e

then

> 0 iff i < 3 < ir+m , all r .

Proof. Proof of the 'if' part is by induction on p , it being true for p = 0 with

the customary convention that A(:) =1.1f i, =~ 3, , then, A being m-banded, we have




i, 000,1 i 1, ,e0e,i
1! p A[ 1) A( 2 [

j1l'tvljp 31

a( Jorees 3p)
2' ’ p
and this is strictly positive, the first factor by the strict m-bandedness of A and the

gsecond by induction. The corresponding argument applies when j1 = istm .

Otherwise iy € 34 < i4+m , But then, A being m~banded and tp, we have

+
j1-m,11,...,ip x x @ @
0 < A . .
11 lj1l""Jp x x o*no’o‘-ooo
+ 8 :x x x
j,-m 1,7000,1 i j,~m 1. s00e,d X X X X
1 b) 1 1 2 o
= a0, )G L0 - Al a0 )AL D)
1 1¢°°**Jp 1 1 27" p

with the subtrahend strictly positive by the strict m—bandedness of A and the induction

hypothesis, and this implies that the factors of the minuend must be strictly positive,

too,
11,...,1

A8 to the 'only if' part, A[,

3 jp] has zeros in columns (rows) 1, ..., r and
pereee

P

rows (columns) r, ..., p in case 1: > 3y (3.2 it+m) , hence ig then gingular. ||/

Corollaxy. 1f A is strictly m-banded and tp, and J, K are integer intervals

with K = {JU(J+m)] , then xle 0 and (Ax)|; =0 imply s'(xlx) > ol .

Proof. (An adaptation of the argument for Theorem 5.1.2 in (6;p.219f)). The assump-
tion that p := s'(x'K) < ]J| 1leads to a contradiction as follows.

Let xo, veey Kp be a corresponding partition of K , i.e., (without loss of general-

ity)
(2) o ¥ (-)‘x“(1 > 0, 1=0,ee.,p .
Then

P

0 = L (-)1v1

i=0
with
(3) Vi - z |X(k)| A(.'k)IJ ) 1=20,.04,p

kel(i

PO

e e
= e

ek




showing that (v‘)g is linearly dependent. This implies, with V ;= [voi ves IvP] s that,

for any 10 € sos € ip in O,

L0 L Lgeeenidy
0 = v(0 et p ) = & ... =z Ix(ko)l.-.lx(kp)l A(k k)
! ! ko €x, kpexp o’ p

and all summands on the right are nonnegative by the tp of A . On the other hand, we can,
by (2), choose k; € K, , all i, so that IX(k0)|-o-|x(kp)| ¥ 0 and will therefore have
reached a contradiction as soon as we exhibit a corresponding choice for 1 € eee < 1p

in J for which

io,...,ip) 5 o
K. yevesk -
Y p

(4) A(
pt1
This we can do as follows. Define (i J¥," by

= J , 4i_ 1= max{ i_1+r R kr-m} s T=0,000,p

b4

li_1.1p+1l
Then {5 < +., < ip since both sequences (i_4+r), and (k,~m),. are strictly increasing.
Also, igs ese, 1p € J since trivially i 4 < i, , while

+t,kr-m}<i

1!_ = max{ 1_1

p+1
since r < p < |J| and k, € K = [1_1,iw1+m] « Finally, kr-m < ir < kr » since 1_4 < kg
< ses < k. implies that i_,+r € k., hence
k~m € max(i_"kt,kr-m} <k, o
The lemma now gives (4) and thereby the desired contradiction. |})
Remark. We have proved here a particular instance of the statement: " If B is tp

- +
and of full rank, then S (x) » § (Bx) " , provided we define S+(0) 1= length of 0 , as

we did earlier.

We conclude that if y el ang Y|k ¥ 0 , then

+ . - - - - - - -
s (y Ix’ IkKl=1 - § ("Ix) < IK|=1 - |J} m=1

hence

Proposition 2.5 . If A is strictly m-banded and tp, then y e¥L\0 implies

st(y') < @1 .

e —




+
Since S (£) » [{ 1 : £(i) = 0 }| , this shows that ¥l is then a Haar space, i.e.,
n— Rl|l : yb— yII is 1-1 and onto whenever |I| = m . Further, this shows that any
nontrivial y' e §{' with m-1 zeros changes sign across each of these zeros and nowhere

else, i.e.,

Corollary. If A is strictly m-banded and tp, and vy eYl\o vanishes at i.I < oo

ipq ¢ then (with i, := —» , { = @),

(6) Y =1 Ty (1) > 0 for i < i<y, r=0,...,m1 .

We make use below of the two subspaces W* anda W of N . These are defined by
* —
U o= (feW: lim |[f(4)| <=} , *=+,- .,
jrvro
Their intersection consists of all bounded solutions to the homogeneous problem Ay = 0 .

The intersection is therefore trivial iff (0.1) has at most one bounded solution. See [2]

for conditions on A equivalent to having W =W" e .




3. The algorithms L and R « Let x be a bounded sequence satisfying Ax = 1' , In
this section, we investigate y,; , the sequence in X '“A which matches x at the
mset I ={i,...,4) with iy < eeo < iy« For k = 0,ec.,m, the interval k of such an
m-set is, by definition, the integer interval

(%)

3=y dpegq 0

with 10=-—¢ 'im+1=.. .

Our ultimate goal is to show that, for k = nt = di.mﬂ* ’ yI' on I(k) lies be-

tween x' and 0 « The proof of this fact involves certain manipulations which are conven-

iently described in terms of two algorithms, given below. For their analysis, the following

fact is useful.

Proposition 3.1 . Let A be sgtrictly m-banded and tp, and let z = x - y; for some ]

m-get I . Then

(2) z(1) ¥ 0 for all ig@g1I .

More precisely,

(3) (-)¥z'(1) >0 for ie1X) |, kmo,...,m .

Proof. Let J be an integer interval containing I 4in its 'interior'. Since A is

m-banded, we have

1'|J - (Az)IJ - AJ,L"IL) s with L = [JU(I+m)]\TI ,

{ and, since A is strictly banded, AJ'L is invertible, by Lemma 2,1. Thus (AJ,L)-1 is

checkerboard, and

-1
z'L = (AJ,L) (1'|J) .

It follows that Z|, changes sign strongly at every slot, with ::(j)(-)j > 0 for all

™~

§ €J and to the left of I . Since J 1is essentially arbitrary, we conclude that

z' > 0 near ~» and that Z|\1 strongly changes sign at every slot. |||




Corollary. If the m-set J = (31,...,jm) is obtained from the m-set

1= (11,---.1m} by moving the leftmost k p-.nts to the left, i.e., 3, € i , r=1,...,k,

while Jp= 4, +» r=k+1,e00,m , then, on [ik,-[ ‘ yI' lies between x' and ¥y' « with

equality only at the points ik+1' ey iy (unless J = I ).

Proof. The assertion follows by repeated application of the special case

=i, for r¥k, Lk_1<jk< i

The proof for this special case goes as follows. By (3),

¥y =y = R -y <o
On the other hand, y; and ¥y; agree at the m=1 points of I\ik , hence their differ-
ence changes sign strongly across each point of ISNi, and nowhere else, by the corollary
to Proposition 2.1. Consequently,

(4a) (=)TCyy* = yg")4) > 0 for i, < i< i, Tk,eee,m,

while, again by (3),
(4b) (=)%(x* = y3'3(1) > 0 for i <1 <i .y, Th,eeem .
L

wWhat is to follow is based on the proposition and its corollary and the following
attempt at constructing a nontrivial element of Y~ .

By the proposition, st(x') < m . hence x' has congtant sign near -« , Let
(5) € := sign x'(1) for i near -»
and let k @ [1,m] be even or odd depending on whether € is 1 or =1 . Choose an

m-set I 8o that "kﬂ lies to the left of all sign changes of x' (if any) . Then, on

11

e, N 22 7y

il s e ol it £ i
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1K) + €y;' lies below €x' , by (3) . We then consider what happens to Yy on 1tk
as we move 11, cses 1k to the left. By the corollary, EyI' must then decrease. There
are two possibilities:

(i) No matter how far we move 11, evey ik to the left, eyI' remaing positive on
I(k) « Then we obtain as a limit point some y € xl which agrees with x at ik+1' see,

i, s hence is not just 0 , and for which ey' lies between £x' and 0 on )==, 1k+1[ .
But this implies that y € W™\ 0 since x is bounded by assumption. A refinement of the
limit process actually gives

aim¥U > m-k .

(ii) Eventually, eyI' becomes nonpositive somewhere in I(k) ¢ hence has (at least)
two sign changes there. We would then decrease k by 2 and try again. By the corollary,
the two sign changes of yI' just acquired would not be affected by subsequent moves.

In this way, we either obtain some nontrivial element of ¥~ or else find ourselves
once again at (ii) but with k = 1 or 2 , making further decreases in k impossible. The
current yI' must then have two sign changes for every time we passed through (ii).

Since s+(y1') < m, this limits the number of times we can pass through (ii). In particul-
ar, if we start with kX = m or m=1 , we must eventually reach (i).

This allows us to talk about the smallest k we manage to arrive with at (i) as we

vary the initial k and I in the above procedure ; call it kL « Analogously, we

define k as the largest k we manage to arrive with at (i) as we play the game to the

R
right rather than the left. The extremality of ky, and kp and the fact that then
amW > m-k, , am®* > x

lead to the desired conclusion in ways to be made precise below.

We now give a formal description of the game just played.

Algorithm L . Input: the integer k, & {o,m}] and the m-~set I = {11,...,1m)

with 11 € oo ¢ im +« Also, recall ¢ := sign x'(i) for 1 near =-w ,

Step 0. k := kin y 1 1= Iin .

.——

7
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Step 1. If (=) < 0, or if x' changes sign to the left of I'K) , then mx1T1 .
-r, 1k+1,...,1m3 s T%0,1,2,000 o

Step 2. Let I, := (11-r, ceey 1k

Step 3. If, for all r, ey; ' >0 on 1'%, then murm2.
r

Step 4.
Step 5 If k <2 , then BEXIT3 .

Pick an r for which ey; ' < 0 somewhere in I,(k) and replace I by I, .
x

Step 6. Decrease k by 2 and return to Step 2 .

We now analyse the output from this algorithm.

EXIT1 is a failure exit which allows us to be less careful about the input than we

L

might otherwise have to be. In the applications of the algorithm, it will be obvious that

we do not exit via EXITt .
EXIT2 is the most interesting of the three, because of the following

Lemma L . If k is as on exit from Algorithm L via EXIT2, then

dinfC » m-k .

Proof. For k = m , there is nothing to prove, so assume Xk < m . Then we have in

hand a sequence (y,) = (yIr) in W for which
0 < eypq'(i) < ey ' (1) < ex' (1) for all i e ]lk-r, 1peql
Now let Ir,k 1= Ir and , for ¥ >0 , jJ > k , consider
I,y = (47F0 eeen Lmre G0 veer Ay g0 Ay qeeney L

Let Ye,4 ™ ¥1 5 be the corresponding interpolants to x from ¥l; see Figure.
X,

[ [
yr:j+1 ¥r+1lj
/

i ‘V4 !
% I

ol
e

Noe

o

e e
)

>
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Then, by the corollary to the proposition,

0 < eyr k'(i) < €y (1) < eee < eyr'm'(i) < ex'(i) for 4 -r < i < i
r

r,k+1 k k

while Yr,j(i) = x{i) for i = ij+1' voey 1m ., and yt,j(ij) moves away from x(ij) as
r increases. Since W is finite dimensional and independent over any m-set (by Proposit-

ior 2.1), it now follows that has limit points in ¥4 and any such limit point

(Ye,3'r

¥y satisfies

0 ¢ ey," < ex' on )= 4 [, and yy(1) = x(1) , A=y gseceidy .

Since x is bounded, this implies that 2z  := ¥g = ¥Ygoq iB in W , vanishes at o410

5, tek+1 is triangular

+es, i, , but does not vanish at i; , i.e., the matrix (zs(it))

K+1 to be independent , hence

with nonzero diagonal, hence invertible. This shows (zs)

ain ¥ > m=k . |||

Finally, if I is obtained via EXIT3 , then we are now certain that y; has a weak
sign change in each of the intervals 0 , 2, ,.., kin ©of 1 in case € = 1 , or in each
of the intervals 1, 3, ..., Kin in cagse € = -1 , This is so because once a sign change is
obtained, in Step 4 , in the current interval k , this sign change persists, by the corol-
lary to the proposition. Further, since €x' > 0 on that interval {(we would have exited
via EXIT1 otherwise), it follows that yI' has two sign changes in each of the intervals
Kin = 23] with kin - 23 > 0, and one in interval 0 if kin, is even, for a total of

ky +1 8ign changes. Since a nontrivial vy €W can have at most m~1 sign changes, an

input of kin =m or m-1 (depending on the sign of € ) together with an Iin which

lies to the left of all sign changes of x' (to avoid EXIT1) is quaranteed to bring us to

EXIT2 . In particular, it makes sense to define

ky, = min { k : x obtained as output via EXIT2 from Algorithm L }
and then
(6) am¥C > m -k,

follows.

Algorithm R is constructed just as Algorithm L , except that all moves are made toward

14
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the right rather than the left. For completeness, we give the full description.

Algorithm R . Input: the integer k;, € [0,m] and the m-set I, = {11,...,1“}
with i, < ¢ee < iy + AlSo, Bset € := sign x'(1) for 4 near = .

Step 0. k := kg, o, I = I, |

Step 1. 1If l~)ka <0, or if x' changes sign to the right of 1{k) » then EXIT1 .

Step 2. Let I = {11,...,1k, i +r,...,1m+r} ¢ T20,1,2,000 o

k+1
Step 3. 1If, for all r, cyzr' >0 on Ir(k) , then EXIT2 .
Step 4. Pick an r for which eyIr' € ¢ somewhere in Ix.(k) and replace I by I, .

Step 5. If k > m=2 , then EXIT3 .

Step 6. Increase k by 2 and return to Step 2 .

A discussion very close to that following Algorithm L would establish the following

facts.

leoma R . If k is as on exit from Algorithm R via EXIT2, then dim " > k . Pur-

ther, the number

kR := max{ k : k obtained as output via EXIT2 from Algorithm R }

is well defined, and

(7) am W > kg

follows.

We are now ready to prove the main result of this sgection.

Theorem 3.8 . If x is the unique bounded solution to the linear system Ax = 1' ,

with A a strictly m-banded biinfinite tp matrix, then, for k = m' := dim¥l" and for any

mget I = {1‘,..-,1"} with 14 € eee ¢ j\n P yI' lies between 0 and x' on the in-

terval I“‘) = i, "kﬂ( « In particular, then
(9) Ix = yzl < Ix|l on 1tk

15




Proof. Let

jo € s0e £ js+(x')
be points on which x' alternates in sign, with x(jo) ¥ 0 . Let 1 be any m-set with
ikL+x = jr y Y =0,1,¢4.,8, and

8 := min(S+(x'), m-kL) .

1f kL > 1 , then, because of the minimality of kL , an application of Algorithm L to the
input kL-z + I is bound to end via EXIT3, hence yI' (with a possibly changed 1) has two
sign changes in each of the intervals kL-Z, kL-d, «ss, and one sign change in the inter-
val 0 in case kL is even, for a total of kL-1 sign changes. In addition, yI' alter-
nates in sign on the points ikL, esey 1kL+s since it agrees there with x' and x'
does, giving an additional s sign changes. We conclude that
(10) yI' has at least kL-1 + 8 s8ign changes to the left of 1kL*s B
and this conclusion holds trivially in case kL <1

We now prove that

s = st (x")
Suppose that s < st(x') . Then s = m-k, , and we now know that y;’' has m=1 sign
changes on ]-w», ikL+e[ , hence does not change sign on [ikL+s' «[ , yet matches x' at
the points ikL+s' coey ikL+S+(x') on which x' alternates in sign, a contradiction.

We conclude that x' has no sign changes to the right of ikL+s , hence an applicat-
ion of Algorithm R to the input kL+s » 1 1is bound to terminate via EXIT2 (because of
(10)) with some k =: kg which is at least as biq as kp+s , yet no bigger than k, by
the maximality of kR « In symbols,

(11) kz‘*s <kl< kR
and therefore, with (6) and (7),
(12) aim” + am W > @k ) +ky > m+s = aimW+ sTx .

This proves that

am W A’ > stix) .

16
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Thus, if now x is the only bounded solution of Ax = 1' , then 1l-an'- {0} , hence

then 8 = s+(x') =0 , and

aimMN > amW + aim N,

This shows that there must be equality throughout (12). This implies equality in (7), i.e.,

and equality in (11) (with 8 = 0), i.e.,
kL-kI-kR'
and thus shows (9) to hold for the original 1 . But now, since st(x') = 0 . this could

have been any m-set I . |]I

Corollary 1. I1f A is strictly m-banded and tp, and x is a bounded sequence satig-

fying Ax = 1' , then s*(x') < aimW AW’ .

Corollary 2. The conclusions of Theorem 3.8 and Corollary 1 remain valid if, in the

hypotheses, 1' is replaced by any strictly alternating sequence u .

Here, we call u strictly altermating if u(i)u{i+t) < 0 for all i .




4. The main result.

Theorem 4.1 « If A is a bounded strictly m-banded biinfinite tp matrix, and «x

is the unique bounded sequence mapped by A to 1' , then A is boundedly invertible on ' L

£ and AT =ax .
» 2nd

Proof. For any integer interval J , let I := [J (J+m)] (J+k) . Then 1 is an

msget, I = {11,...,1m} with 1y < ees < i , say. Let zy := x-y; , with y; e¥l

-‘llh and x = y; on I . Then we conclude from Theorem 3.8 that
(2) lzg(3)1 < Ix(3)] , all j e J+k

while {

1'|J = (A(x—yI))|J = AJ(zJ|J+k)
with
| sm
AJ s AJ,J*‘k .
Since AJ is tp, this implies that AJ is invertible (as a general result, though the

k invertibility of AJ could in the present circumstance be derived directly from Lemma

2.1), hence its inverse is checkerboard and so takes on its norm on the vector 1"J ’

ie.e,,
; a7 = T O =z M. !
i J J i3 J|JI+k }

Combine this with (2) to get

: -1
(3 L

I < ixl , for all intervals J .

Since A is bounded and banded, it carries ¢4 := cy(B) := {f e Rz : limlil#wlf(i)l = 0}

to itself, and the bounded invertibility of A'co follows now by a standard argument:

Let P, be the truncation projector,

£(1) , ied 'i
r

(P )t o= .
0 otherwise E

Then PJ — 1 pointwise on c¢; , therefore PJAPJ+k——* A pointwise on ¢, as J — Z.

Now AJ - Aa,J+k represents the interesting part of PJAPJ+k s i.es, the map PJAIranPJ+k'

Therefore, for u € ¢, and uy := AJ'1PJAu € ran Py, , we have

18




-1
fu; = ul = da" (P Au~ P AP, u)t i

< Ixb A lu -~ P ul —_ 0
'+
J+k Iz

-1 -
since IAJ f < ixt and IPJAI < Al ., Thus Ay 1PJ converges pointwise on ¥
ran A).  to a left inverse of A' . Further, |
) g !
lul = lmaugd < Tim IAJ-1IIAuI < Ixt 1Aut , !

i.e., Alco is bounded below, hence ran AICO is closed. The same argument shows that

*

also (Alc ) = AT|£ is bounded below, hence ran Alco is also dense. We conclude
0 1

that A'co is 1-1 and onto c¢; , hence boundedly invertible. Its inverse is therefore

again (representable as) a matrix , i.e., (Alco)-1 A'1|c° for some matrix A~! whose
-1 -1

rows are uniformly in 11 , and (Alco) = limJ’z(PJAPJ+k) PJ pointwise on c¢; , hence

(4) A-1 = 1lim A - entrywise.

J*Z ' J

1

- (24 -
But then A provideg the inverse of A on 2“ - (co) , and JA 1l = Ixl since

1A "1 < Ixt from (3) and (4), while A~ '(1') = x . |||

The assumptions of Theorem 4.1 can be weakened in two ways.
As already pointed out earlier, the results of Section 3 do not depend on having a

bounded sequence x satisfying Ax = 1' . It is sufficient to consider bounded sequences

R

for which u := Ax is strictly alternating, i.e., u(i)u(i+1) < 0 , all i. For the results .!
of Theorem 4.1, we need, more strongly, that u is uniformly alternating, i.e., strictly {
alternating and with inf |u(i)| > 0 . In that case, the diagonal matrix

D = Teee , (0wt we )

1

is bounded (since u = Ax is) and boundedly invertible, while D 'A is still strictly 3

m-banded and tp and carries the bounded sequence x to D"u = 1' , hence D"A is in-

vertible on t_ and I(D-ta)-il = Ixl . Therefore A = D(D”'A) is invertible and

1 1

T Tk DR T Iy NEFOZETEE
’
Secondly, the assumption of strict m-bandedness, though essential for part of the ar-

gument, is not essential for the conclusion. For, according to (4], a bounded m-banded tp

matrix A , whose rows and columns are linearly independent, is the uniform limit of
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strictly m~banded tp matrices Ae (a8 € — 0 , say). In our case, the linear

— e A e

independence of the columns follows from the assumed uniqueness of the bounded solution

to Ax = u , while the linear independence of the rows follows from the assumed total

positivity of A and the assumed existence of x with Ax strictly alternating.

Existence and uniqueness of a bounded solution to the equation Ax = u (with a uniformly b

alternating u ) therefore implies existence and uniqueness of a bounded solution x to

e

the equation Aex =u. . with u, = ou~ (A - As)x again uniformly alternating for all

sufficiently small ¢ . Consequently, Ac is then boundedly invertible on {_ and

-1
o< supi'jlx(i)/ue(j)l

=3 supi'jlx(i)/u(j)l .

Thus A must be boundedly invertible on £_ and TS sup, jlx(i)/u(j)l .
’

Corollary « The conclusions of Theorem 4.1 remain true if A is only m—banded and |

1' 4is replaced by a uniformly alternating sequence u .

The proof of Theorem 4.1 shows more than just the invertibility of A on 2 . It

shows that A has its k-th diagonal as main diagonal in the sense introduced in [1]: The

sections A. = A are invertible as J — 2 and the corresponding set (A "1 s
J J,J+k J

1 is the bounded entrywise limit of these finite matrices AJ'1 « Again,

bounded. Hence A~
this conclusion persists if A is only m-banded since it is then the uniform limit of

strictly m-banded tp matrices.

Theorem 4.5 « Let A be an m-banded biinfinite tp matrix which is bounded and bound-

edly invertible. Then A has a main diagonal, i.e., for some k and all intervals J ,

is_invertible and A~! is the bounded entrywise limit of (AJ,J+K)-1 . Lo

Az,3+k

Consequently, with D the diagonal matrix

B iad

D = [Teee , (=Y, L),

-y~ "a""p  is again tp. In particular, A~' is checkerboard,

(33" g9y > 0, all 4,5 .




5. Concluding Remarks. S. Friedland, in reaction to a presentation of these results,

suggested that a tp matrix, whether banded or not, must map L, onto itself if its range

on £  contains 1' , since it is then possible to generate a pre-image for every u e £
as a limit point of minimal solutions of (PjA)y = Pju , using the checkerboard nature of
the inverses of finite sections of A . Further, A. Pinkus showed how to establish the sign

regularity of DA"D , Wwith A'1 the bounded inverse of a tp matrix A , without assuming

that the inverse is the limit of inverses of finite sections. These matters are made

precise in [3)}.
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